Extensions 1→N→G→Q→1 with N=C2 and Q=C22×Dic6

Direct product G=N×Q with N=C2 and Q=C22×Dic6
dρLabelID
C23×Dic6192C2^3xDic6192,1510


Non-split extensions G=N.Q with N=C2 and Q=C22×Dic6
extensionφ:Q→Aut NdρLabelID
C2.1(C22×Dic6) = C2×C4×Dic6central extension (φ=1)192C2.1(C2^2xDic6)192,1026
C2.2(C22×Dic6) = C22×Dic3⋊C4central extension (φ=1)192C2.2(C2^2xDic6)192,1342
C2.3(C22×Dic6) = C22×C4⋊Dic3central extension (φ=1)192C2.3(C2^2xDic6)192,1344
C2.4(C22×Dic6) = C2×C122Q8central stem extension (φ=1)192C2.4(C2^2xDic6)192,1027
C2.5(C22×Dic6) = C2×C12.6Q8central stem extension (φ=1)192C2.5(C2^2xDic6)192,1028
C2.6(C22×Dic6) = C42.274D6central stem extension (φ=1)96C2.6(C2^2xDic6)192,1029
C2.7(C22×Dic6) = C2×Dic3.D4central stem extension (φ=1)96C2.7(C2^2xDic6)192,1040
C2.8(C22×Dic6) = C233Dic6central stem extension (φ=1)48C2.8(C2^2xDic6)192,1042
C2.9(C22×Dic6) = C2×C12⋊Q8central stem extension (φ=1)192C2.9(C2^2xDic6)192,1056
C2.10(C22×Dic6) = C2×C4.Dic6central stem extension (φ=1)192C2.10(C2^2xDic6)192,1058
C2.11(C22×Dic6) = C6.72+ 1+4central stem extension (φ=1)96C2.11(C2^2xDic6)192,1059
C2.12(C22×Dic6) = C42.88D6central stem extension (φ=1)96C2.12(C2^2xDic6)192,1076
C2.13(C22×Dic6) = C42.90D6central stem extension (φ=1)96C2.13(C2^2xDic6)192,1078
C2.14(C22×Dic6) = D4×Dic6central stem extension (φ=1)96C2.14(C2^2xDic6)192,1096
C2.15(C22×Dic6) = D45Dic6central stem extension (φ=1)96C2.15(C2^2xDic6)192,1098
C2.16(C22×Dic6) = D46Dic6central stem extension (φ=1)96C2.16(C2^2xDic6)192,1102
C2.17(C22×Dic6) = Q8×Dic6central stem extension (φ=1)192C2.17(C2^2xDic6)192,1125
C2.18(C22×Dic6) = Q86Dic6central stem extension (φ=1)192C2.18(C2^2xDic6)192,1128
C2.19(C22×Dic6) = Q87Dic6central stem extension (φ=1)192C2.19(C2^2xDic6)192,1129
C2.20(C22×Dic6) = C2×C12.48D4central stem extension (φ=1)96C2.20(C2^2xDic6)192,1343

׿
×
𝔽